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Abstract. In this paper a novel framework is presented for interactive
feature-based retrieval and visualization of human statues, using depth
sensors for mobile devices. A skeletal model is fitted to the depth image
of a statue or human body in general and is used as a feature vector
that captures the pose variations in a given collection of skeleton data.
A scale- and twist- invariant distance function is defined in the feature
space and is employed in a topology-preserving low-dimensional lattice
mapping framework. The user can interact with this self-organizing map
by submitting queries in the form of a skeleton from a statue or a human
body. The proposed methods are demonstrated in a real dataset of 3D
digitized Graeco-Roman statues from Palazzo Altemps.
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1 Introduction

For the past decade, the technological advances in the areas of portable electronic
devices have revolutionized the use and range of applications of tablet computers,
smart phones, and wearable devices. Furthermore, various multimodal sensors
have been introduced in mobile devices to offer more natural user-machine in-
teractions. Depth sensors (range cameras) have become popular as natural user
interfaces for desktop computers and have recently become available for mobile
devices, such as the Structure SensorTMby Occipital.

Depth sensors have been used in various applications related to body tracking
such as human detection, model-based 3D tracking of hand articulations [11],
human pose recognition and tracking of body parts [12], real-time 3D reconstruc-
tion of the articulated human body [3], motion tracking for physical therapy [5],
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and others [7]. The reader is referred to [7] for a more detailed review of RGB-D
applications.

In this paper we present a novel application of depth sensors for mobile
devices in the topic of digital archaeology. Digital technologies have been adopted
in various areas related to museum experience, digital preservation, as well as
digitization and study of archaeological artifacts [4].

Fig. 1. Example of an RGB-D frame captured by the camera and depth sensor for
a tablet computer (shown on the left). The same depth frame is rendered from two
different perspectives —with and without color texture. Images shown with permission
from the Italian Ministry of heritage, cultural activities and tourism. Su concessione
del Ministero dei beni e delle attività culturali e del turismo - Soprintendenza Speciale
per il Colosseo, il Museo Nazionale Romano e l’area archeologica di Roma.

Digital collections become even more useful educationally and scientifically
when they provide tools for searching through the collection and analyzing, com-
paring, and studying their records. For example an image collection becomes
powerful if it can be searched by content, technique, pattern, color, or even
similarity with a sample image. The lack of keywords and generalizable annota-
tion for such type of analysis generates the need for keyword-free feature-based
analysis.

In this paper a framework is presented for 3D digitization, database retrieval,
and analysis of classical statues using depth sensors for mobile devices. In this
framework each statue is represented in a feature space based on the skeletal
geometry of the human body. A distance function is defined in the feature space
and is employed in order to find statues with similarities in their pose. The
search query in the presented framework is the body of the user, who can interact
with the system and find which statues have poses similar to the user’s pose.
The proposed methods are demonstrated, using real data from classical statues
(shown in Fig. 1) collected in Palazzo Altemps in Rome, Italy.

The contributions in this paper are threefold: a) A novel application of depth
sensors for mobile devices is presented for feature-based retrieval of 3D digitized
statues. b) A scale- and twist-invariant distance function between two given
skeletons is proposed. c) A special type of self-organized maps is presented for
interactive visualization of the space of body postures in a low-dimensional lat-
tice.
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2 Methods

Depth sensors can be used to detect the presence of a particular skeletal geom-
etry, such as human skeletal geometry, by fitting to each acquired depth frame
a skeletal model that consists of the following set of parameters:

S = {tj ∈ R
3,Rj ∈ SO(3) : j ∈ J } (1)

where J is a set of indices of joints connected together in a tree structure of
parent/children nodes. Each joint is defined by its location in the 3D space,
which is expressed as a translation tj from the origin of the coordinate system
of the root joint, and its orientation in the 3D space is given as rotation matrix
Rj with respect to the orientation of the root node. There are several algorithms
that compute S from RGB-D, such as those implemented in the Microsoft Kinect
SDK [1], in OpenNI library [2], and others [14, 12].

2.1 Skeleton distance functions

One way to compute distances between unit vectors is the so-called cosine dis-

tance given by 1−cos(φ), where φ is the angle between the two vectors. Although
the triangle inequality property is not satisfied by this function and therefore is
not considered a distance metric, it is computationally very efficient as it can
be expressed in a polynomial form. Cosine distance can be extended in order to
perform comparisons between elements of SO(n) space by calculating the cosine
of the angles between the corresponding rotated orthogonal basis as follows:

dist(R1,R2) = 3− cos(φ1)− cos(φ2)− cos(φ3) = 3− trace(R1
TR2) (2)

where φi denotes the angle between the rotated basis vectors R1ei and R2ei. It
can be easily shown that the value of Eq. 2 becomes zero when R1 = R2.

In the case of skeletal geometry, the distance between two poses a and b ∈ S
can be computed by evaluating Eq. 2 for every joint in J . Such a distance
function is scale invariant since it does not take under consideration the locations
of the joints, which is a desirable property for our application. Furthermore, the
calculated distance can become twist invariant (i.e. invariant under rotations
around the line segment that connects two joints) by evaluating Eq. 2 only for
the basis vector that corresponds to the axis along the particular line segment
as follows:

dist(a, b) = |J | − eT1

∑

j∈J

Ra
j
T
Rb

je1 (3)

where |J | is the cardinality of the set of tracked joints, and Ra
j , R

b
j are the

corresponding rotation matrices of the skeletons a and b respectively. Without
loss of generality, e1 is a unit vector that denotes the basis of a line segment
in the skeletal structure. Eq. 3 is scale-invariant and twist-invariant, which are
both necessary properties in our application. Scale-invariance guarantees that
the distance between skeletons of different subjects will be zero if both are in
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the same pose. Twist-invariance makes the function robust to possible miscal-
culations of the rotation of each joint during the skeleton fitting process. In the
next section we employ Eq. 3 to achieve 3D object retrieval from a database of
human statues using self-organizing maps.

2.2 Interactive statue retrieval using self-organizing skeletal maps

Given a dataset of skeletons s1, s2, · · · ∈ S and a query skeleton q ∈ S, we need
to construct a topographic mapping to a 2-dimensional lattice that satisfies the
following 2 conditions: a) q is mapped to a fixed location at the center of the
lattice, and b) similar skeletons should be mapped to neighboring lattice loca-
tions. The goal of such mapping is to generate an interactive low-dimensional
visualization of the multi-dimensional manifold S for 3D statue retrieval pur-
poses. The user can provide an input query q, which could either belong to the
existing dataset si (i.e. the posture of a previously digitized statue) or be a new
sample in the space S (i.e. the posture of a human subject or a new statue).

Self-organizing maps have been well-studied in literature and have been em-
ployed in various applications related to machine learning and data visualization
[9, 6, 8, 13]. A self-organizing map is a type of artificial neural network originally
proposed by T. Kohonen [9] that consists of a set of nodes, each of which is
located at position x of a low-dimensional lattice (in our application x ∈ R

2)
and is associated with an unknown weight vector in the original feature space
(in our application wx ∈ S).

The weight vectors produce a dynamic mapping R
2 → S in the form f(x) =∑

y wyK(|x− y|), where K is a neighborhood-based kernel function centered at

y ∈ R
2. The mapping is modified by following an iterative energy optimization

process using the following update rule:

w′
x = wx − α(t)

∂dist(si, wx)

∂wx

K(|x− x∗|) (4)

where x∗ = argminx dist(si, wx). The derivative of the distance function defined
in Eq. 3 can be analytically calculated and results in a |J | × 3-size gradient
vector that contains the coefficients of the vectors −Ri

je1 ∀j ∈ J , where Ri
j

are the rotation matrices of si ∈ S. Therefore, in our implementation the weight
space is |J |×3-dimensional and consists of |J | unit vectors. This mapping of the
feature space is due to the scale- and twist-invariance of the distance function,
as discussed previously.

Eq. 4 is applied iteratively for all si in the given dataset and for all lattice
locations x except for a predefined central node that corresponds to the query
skeleton q (i.e. wx = q). The rest of the weights can be initialized randomly
using a Gaussian distribution centered at q. After each iteration the wx is prop-
erly normalized in order to ensure that the components of the weight vector
correspond to |J | unit vectors.

In the next section we demonstrate the presented techniques, using a real
dataset of digitized sculptures.
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Fig. 2. Left: Example of a statue reconstructed in 3D by fusing a sequence of depth
frames. Right: Zoomed view of the reconstructed mesh to show detail.

3 Experimental Results

In this project we used the Structure SensorTMby Occipital, which was attached
in front of a tablet computer (iPad AirTMby Apple). The resolution of the depth
sensor was 640×480 pixels at 30 frames per second and was calibrated so that it
records depth in the range from 0.4m to 3.0m, which is adequate for capturing
life-size statues. Another depth sensor, KinectTMby Microsoft, was also used in
our depth fusion experiments, which were performed on a 64-bit computer with
Intel Core i7TMCPU at 2.80GHz and 8GB RAM. Both Kinect and Structure
sensors had similar resolution, range of operation, and field of view and were
seamlessly used in this project, and therefore we will not differentiate their depth
data in our discussion.

In order to create a test dataset for our experiments we digitized in 3D stat-
ues from the collection of Palazzo Altemps in Rome, Italy with the permission of
the director of the museum, Alessandra Capodiferro. Palazzo Altemps is located
in the centre of Renaissance Rome, between Piazza Navona and the Tiber river,
in the northern part of Campus Martius. Archaeological excavations have uncov-
ered Roman structures and finds dating from the 1st century AD to the modern
age. The current building remained property of the Altemps family for about
three centuries, after it was originally acquired by Cardinal Marcus Sitticus Al-
temps in 1568, who commissioned architects and artists of the time to undertake
significant work to extend and decorate the palace. Today the National Roman
Museum branch at Palazzo Altemps houses important collections of antiquities,
consisting of Greek and Roman sculptures that belonged to various families of
the Roman aristocracy in the 16th and 17th centuries [10].

This study focused on statues from three of the collections housed in the
museum: Boncompagni Ludovisi collection, Mattei collection, and Altemps col-
lection. Boncompagni Ludovisi is the famous 17th century collection of ancient
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Fig. 3. This figure shows selected samples from our dataset of 3D digitized statues.

Fig. 4. Visualization of the dataset of skeletons shown from three different perspectives.

sculptures housed in Villa Ludovisi in Quirinal , which was a popular attraction
for scholars, artists, and travelers from all over the world up to and throughout
19th century. The 16th century Villa Celimontana with its Navicella garden was
property of Ciriaco Mattei and was decorated with ancient sculptures, some of
which are today in the Mattei collection of Palazzo Altemps. Finally, the im-
portant antiquities collection of the Altemps family consists of about a hundred
noteworthy pieces of sculptures. These decorated the aristocratic home of Mar-
cus Sitticus Altemps (the grandson cardinal of Pope Pius IV) in line with the
prevailing antiquarian taste of the 16th century.

The statues of our interest were in various standing positions and were por-
traying figures from classical mythology. In total 22 life-size statues were digi-
tized by manually moving the depth sensor around each statue and fusing the
acquired data using the Kinect Fusion software [1]. The 3D digitization process
lasted for approximately 3 minutes for each statue (181.5 ± 47.2sec). In addi-
tion to the 3D reconstructed models, a dataset of the corresponding skeletons
was also created by using the skeleton fitting process of the OpenNI library [2]
with auto-calibration setting. In the case of fitting errors caused by the presence
of adjacent objects or heavy clothing the estimated skeletons were manually
corrected. The dataset created from this process is shown in Figs. 3 and 4.
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Fig. 4 shows the skeletal samples s1, . . . , s22 ∈ S in the dataset. The skeletons
in this plot were normalized in terms of their sizes (full body size and limb size)
in order to show the variability of the poses in the dataset. Based on the plots
from all three perspectives, it is evident that larger differences are observed in
the position of the arms of the statues and smaller yet notable variations are
observed in the orientations of the legs and torso as expected.

In the proposed framework, the pose of the statues forms the feature space,
which is employed in the comparisons between statues and feature-based database
searches for statues with similar poses. The quality of the employed features is
determined by their ability to capture the distinct characteristics of each ele-
ment in the search space; hence the pose variations in Fig. 4 are essential in the
proposed framework.

In order to test the interactive statue retrieval framework presented in Sec.
2 we performed skeleton fitting to a human subject who stood in a particular
pose in front of the depth sensor. The fitted skeleton was provided as the query
input q to a self-organizing 2D map of size 5 × 3. The central node in the map
was assigned to the query vector. The rest of the map was initialized randomly
and updated for 1000 iterations, a process that was completed in less than 1 sec
in the tablet computer. A representative result is shown in Fig. 5.

Fig. 5. An example of a self-organized map of skeletons. The map was generated around
the query skeleton located at the center of the map. The background intensity shows
the distance from the query skeleton.

By observing Fig. 5 we can see that skeletons with similar poses were mapped
in adjacent locations on the map, such as the adjacent skeletons in the center of
the map (see also the skeletons in the upper right and the lower right corners).
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Furthermore, there are smooth transitions between different poses when possible.
At this point it should be noted that due to the limited number of samples in
our dataset it is not always possible to put the samples in a smooth order.

The gray-scale intensity of the background in Fig. 5 corresponds to value
of the distance (given by Eq. 3) between each skeleton and the query skeleton.
As expected, the locations around the center of the map correspond to smaller
distances (brighter intensities) compared to the areas along the edges of the map.

Finally, Fig. 6 shows the three “closest” statues to the given skeleton query
among all statues in the database. The corresponding distance values are also
reported. Although the two first statues have similar postures on the upper
part of the body, the pose of the first statue’s legs better resembles the query
skeleton. As a result, the first statue has the smallest distance from the query,
which demonstrates the efficacy of the presented framework.

Fig. 6. Demonstration of interactive search. The search query is shown on the left. The
best matching statues and their corresponding distance from the query are reported.

4 Conclusion

The pilot study in this paper shows that the presented framework can be used
for keyword-free feature-based retrieval of statues in mobile devices. This has the
potential to be used as an interactive guide in museums, but also as a scientific
tool that assists scholars in identifying statues with similar characteristics from a
large repository of statues. The future use of depth sensors in mobile devices will
significantly support the creation of such repositories of 3D digitized artifacts,
using limited resources (in terms of scanning time, computational effort, and
cost) as well as their computer-assisted study as demonstrated in this paper.
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